In vitro resistance study of rupintrivir, a novel inhibitor of human rhinovirus 3C protease.
نویسندگان
چکیده
Rupintrivir (formerly AG7088) is an irreversible inhibitor of the human rhinovirus (HRV) 3C protease that has been demonstrated to have in vitro activity against all HRVs tested, consistent with its interaction with a strictly conserved subset of amino acids in the 3C protease. The potential for resistance was studied following in vitro serial passage of HRV serotypes 14, 2, 39, and Hanks in the presence of increasing rupintrivir concentrations. HRV variants with reduced susceptibilities to rupintrivir (sevenfold for HRV 14) or with no significant reductions in susceptibility but genotypic changes (HRV 2, 39, and Hanks) were initially isolated following 14 to 40 cumulative days in culture (three to six passages). Sequence analysis of the 3C protease identified one to three substitutions in diverse patterns but with common features (T129T/A, T131T/A, and T143P/S in HRV 14; N165T in HRV 2; N130N/K and L136L/F in HRV 39; T130A in HRV Hanks). Notably, three of the four HRV variants contained a substitution at residue 130 (residue 129 in HRV 14). Continued selection in the presence of escalating concentrations of rupintrivir (40 to 72 days) resulted in the accumulation of additional mutations (A121A/V and Y139Y/H in HRV 14, E3E/G and A103A/V in HRV 2, S105T in HRV 39), with only minimal further reductions in susceptibility (up to fivefold). The ability of specific substitutions to confer resistance was examined by susceptibility testing of HRV 14 variants constructed to contain 3C protease mutations. In summary, the slow accumulation of multiple amino acid substitutions with only minimal to moderate reductions in susceptibility highlight the advantages of 3C protease as an antiviral target.
منابع مشابه
Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor.
The picornavirus 3C protease is required for the majority of proteolytic cleavages that occur during the viral life cycle. Comparisons of published amino acid sequences from 6 human rhinoviruses (HRV) and 20 human enteroviruses (HEV) show considerable variability in the 3C protease-coding region but strict conservation of the catalytic triad residues. Rupintrivir (formerly AG7088) is an irrever...
متن کاملMultiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C.
Human rhinovirus type C (HRV-C) is a newly discovered enterovirus species frequently associated with exacerbation of asthma and other acute respiratory conditions. Until recently, HRV-C could not be propagated in vitro, hampering in-depth characterization of the virus replication cycle and preventing efficient testing of antiviral agents. Herein we describe several subgenomic RNA replicon syste...
متن کاملA Novel Enterovirus 71 (EV71) Virulence Determinant: The 69th Residue of 3C Protease Modulates Pathogenicity
Human enterovirus type 71 (EV71), the major causative agent of hand-foot-and-mouth disease, has been known to cause fatal neurological complications. Unfortunately, the reason for neurological complications that have been seen in fatal cases of the disease and the relationship between EV71 virulence and viral genetic sequences remains largely undefined. The 3C protease (3Cpro) of EV71 plays an ...
متن کاملAntiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease
Hand, Foot and Mouth Disease is a highly contagious disease caused by a range of human enteroviruses. Outbreaks occur regularly, especially in the Asia-Pacific region, putting a burden on public healthcare systems. Currently, there is no antiviral for treating this infectious disease and the only vaccines are limited to circulation in China, presenting an unmet medical need that needs to be fil...
متن کاملStructural basis for antiviral inhibition of the main protease, 3C, from human enterovirus 93.
Members of the Enterovirus genus of the Picornaviridae family are abundant, with common human pathogens that belong to the rhinovirus (HRV) and enterovirus (EV) species, including diverse echo-, coxsackie- and polioviruses. They cause a wide spectrum of clinical manifestations ranging from asymptomatic to severe diseases with neurological and/or cardiac manifestations. Pandemic outbreaks of EVs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 51 12 شماره
صفحات -
تاریخ انتشار 2007